VIBRATIONAL ANALYSIS OF THE 1,1,1-TRIFLUOROETHYL HALIDES*

G. A. CROWDER

Department of Chemistry and Killgore Research Center, West Texas State University, Canyon, Texas 79015 (U.S.A.) (Received July 17, 1972)

SUMMARY

Normal coordinate calculations have been carried out for CF_3CH_2Cl using a 30-parameter valence force field. The resulting force constants for the CF_3 group have been transferred to CF_3CH_2F , CF_3CH_2Br and CF_3CH_2I with excellent results. Previous vibrational assignments have been revised, the calculations showing that several of the normal modes are highly mixed.

INTRODUCTION

Infrared and Raman spectra have been determined for $CF_3CH_2F^{1,2}$, $CF_3CH_2Cl^{3,4}$, $CF_3CH_2Br^1$ and $CF_3CH_2I^1$, and vibrational assignments have been proposed for all four compounds. However, on the basis of current knowledge of the theory of group vibrations, several of the band assignments do not seem reasonable. For this reason, normal coordinate calculations have been undertaken in order to derive some information about the vibrational frequencies and force constants, and add to the theory of group vibrations for the groups involved.

EXPERIMENTAL

The calculations were carried out with an IBM 360/40 computer and utilized programs written by Schachtschneider^{5, 6} for the calculation of the G matrix, the solution of the vibrational secular equation and for the least-squares refinement of the force constants to fit the observed frequencies. The programs were modified slightly to run on our computer.

^{*} This work was supported by The Robert A. Welch Foundation, Houston, Texas.

NORMAL COORDINATE CALCULATIONS

The trifluoroethyl halide molecules belong to the C_s point group, giving rise to 11a' + 7a'' vibrations. Symmetry coordinates were constructed from the 20 internal coordinates in order to take advantage of the molecular symmetry in the calculations. The bond lengths and angles of the CF₃CH₂ group were assumed to be the same in all four molecules. The values used were C-F = 1.33 Å, C-C = 1.54 Å, C-H = 1.093 Å; all angles were assumed to be 109° 28'. The carbonhalogen bond lengths of the CH₂X groups were taken to be C-F = 1.385 Å, C-Cl = 1.782 Å, C-Br = 1.938 Å and C-I = 2.140 Å, respectively.

CF_3CH_2Cl

Calculations were first carried out for trifluoroethyl chloride because a force field has been published for ethyl chloride⁷ from which initial values for the CH₂Cl group may be transferred. Initial values of force constants for the CF₃ group were transferred from CF₃CHO⁸.

The calculated potential-energy distribution showed that the interaction constant between the two HCCl angles was hindering the calculation, and for this reason it was set equal to zero as had been done for ClCH₂CN⁹. It was also obvious that H_{α} and K_x were too small. In addition, either K_S was too large or F_S was too small, or both, because the CF₃ asymmetric stretching frequencies were calculated to be above 1400 cm⁻¹ (F_S makes a negative contribution to the potential energy). These values were therefore changed manually until more reasonable values for the frequencies were calculated. Then refinements of some of the force constants were made by the method of least-squares discussed by Schachtschneider ^{5, 6}. Some of the band assignments of Nielsen, Liang and Smith³ were changed prior to the refinement of the force constants but their frequency values were used.

In the final adjustment, the following force constants were refined: K_r , F_r , F_{RS} , F_S , $F_{X\delta}$, H_{α} , H_{γ} , H_{β} , $F_{\beta\gamma}$, H_{δ} , H_{θ} , F_{θ} , H_{ω} and H_{τ} . Values for some of the force constants that were held fixed were obtained by prior refinement or were estimated from the resulting potential-energy distribution. The observed and calculated fundamental frequencies for CF₃CH₂Cl are listed in Table 1, together with the approximate normal coordinate description of the vibrations in terms of the symmetry coordinates.

Nielsen, Liang and Smith³ assigned bands observed at 905, 1110, 1339 and 1443 cm⁻¹ to the CH₂ wag, rock, bend and twisting vibrations, respectively. The normal order of these frequencies is that shown in Table 1. These authors also assigned a weak infrared band at 455 cm⁻¹ to the a'' CF₃ deformation and the C–C stretch to a band at 855 cm⁻¹. It appears unlikely that the asymmetric CF₃ deformations will differ by 96 cm⁻¹, and in the present calculations these vibrations were assumed to be accidentally degenerate at 541 cm⁻¹. The major contribution to the 855 cm⁻¹ band is from the CF₃ symmetric stretch, and the C–C stretch

makes its major contribution to the band at 1339 cm⁻¹. These calculations are in agreement with those made for other fluorine-containing molecules, a number of which have been discussed by Tuazon, Fateley and Bentley¹⁰.

Obs.	Calc.	Description ^a (approx. PED ^b)			
a'					
2994	2994	CH ₂ ss(99)			
1443	1443	$CH_2 \delta(81); C-C s(14)$			
1339	1339	C-C s(39); CF ₃ s8(30); CF ₃ ss(28); CH ₂ w(11)			
1267	1265	CF ₃ as(43); CH ₂ w(21); CF ₃ ad(17); CF ₃ r(11)			
1159	1159	CH ₂ w(59); CF ₃ as(17); CF ₃ ss(11)			
855	855	$CF_3 ss(44); C-C s(30)$			
801	800	C-Cl s(84)			
639	640	CF ₃ sδ(50); C-C s(18)			
541	542	$CF_3 a\delta(68); CF_3 as(18)$			
330	325	CF ₃ r(56); C-Cl s(14)			
180	182	C–C–Cl δ(59); CF ₃ r(26)			
a''					
3044	3044	$CH_2 as(99)$			
1277	1279	CF_3 as(47); CF_3 ad(18); CH_2 tw(17); CH_2 r(11)			
1110	1111	$CH_2 tw(77); CH_2 r(10)$			
905	905	$CH_2 r(71); CF_3 as(20)$			
541	541	$CF_3 a\delta(70); CF_3 as(17)$			
355	358	$CF_3 r(85); CF_3 as(15)$			
109	109	C-C $\tau(89)$; CH ₂ r(6); CF ₃ r(4)			

^a Abbreviations used: ss = symmetric stretch, $\delta =$ deformation, s = stretch, w = wag, as = asymmetric stretch, r = rock, $s\delta =$ symmetric deformation, $a\delta =$ asymmetric deformation, tw = twist, $\tau =$ torsion.

^b Only potential energy contributions of 10 % or greater are given, except for torsion.

CF_3CH_2Br

TABLE 1

The final force constant values obtained for CF_3CH_2Cl were used as the initial values for CF_3CH_2Br . The zero-order calculated frequencies were used to revise the vibrational assignment given by Edgell, Riethof and Ward¹ who assigned the bands observed at 843, 868, 1082, 1140 and 1308 cm⁻¹ to the C-C stretch, CH_2 wag, CH_2 rock, C-F stretch and CH_2 twist, respectively.

In order to support the present assignments and to check the transferability of the force constants of the CF₃ group, only those force constants of the CH₂X group were initially adjusted while those of the C-CF₃ group were constrained to the chloride value. However, there seemed to be small differences in the calculated value of $K_{\rm R}$ and H_{ω} among the halides. For this reason, the 10 force constants $K_{\rm r}$, $F_{\rm r}$, $K_{\rm R}$, $K_{\rm x}$, H_{α} , H_{β} , H_{γ} , H_{δ} , H_{ω} and $F_{\beta\gamma}$ were refined while constraining the other 20 constants to the trifluoroethyl chloride values.

CF_3CH_2I

The final force constant values obtained for CF_3CH_2Br were used as the initial ones for CF_3CH_2I , and as a result five of the band assignments given by Edgell, Riethof and Ward had to be changed. They assigned the bands at 142, 289, 844, 1127 and 1286 cm⁻¹ to the *a'* CF₃ rock, CH₂I rock, C-C stretch, C-F stretch and CH₂ wag respectively. The same 10 force constants as listed for the bromide were refined while constraining the other 20 constants to the chloride value.

CF_3CH_2F

The final force constant values obtained for CF_3CH_2Cl were used as the initial set for the fluoride. Several changes also had to be made in the band assignments of this compound. Two bands in the region 1050–1100 cm⁻¹ were assigned as fundamentals, but when the frequencies of all four halides were compared it was obvious that only the C-F stretch of the CH_2F group should lie in this region. In addition, it seems likely that only one of the two bands at 908 and 972 cm⁻¹ should be assigned as a fundamental. The 908 cm⁻¹ infrared band is weak and there is no corresponding Raman band, and for this reason the 972 cm⁻¹ band was chosen as the CH_2 rock. The chloride value was then equal to 905 cm⁻¹ while the fluoride frequency should be higher than this.

Under these circumstances, however, it was not possible to assign a band to the CH₂ twist. For this reason, the values for H_{β} , H_{γ} and $F_{\beta\gamma}$ were determined by refining these constants to fit those frequencies other than the CH₂ twist to which they make a significant contribution to the potential energy. These are mainly the bands at 1374, 1296, 1187 and 972 cm⁻¹. When this was done, the CH₂ twist frequency was calculated as 1184 cm⁻¹, only 4 cm⁻¹ lower than the calculated value for the wag, although it should be borne in mind that the wagging mode mixes significantly with other modes.

During the refinement of the 10 force constants listed previously for the bromide, the C-C stretching constant oscillated between 4.60 and 4.65 N cm⁻¹ without converging to a final value. Therefore, $K_{\rm R}$ was constrained to the chloride value, 4.626 N cm⁻¹, and the other nine constants were refined.

DISCUSSION

The observed and calculated wave numbers and fundamental vibrational assignments of the trifluoroethyl halides are given in Table 2. Only the major contribution is listed in the assignment but a number of the normal modes are highly mixed, as shown for the chloride in Table 1. The amount of mixing is approximately the same in all four compounds but there are some differences, usually in the percentage contributions. One big difference lies in the two smallest a' frequencies. For the chloride, bromide and iodide, these two frequencies

TABLE 2

OBSERVED AND	CALCULATED	WAVE	NUMBERS	(cm ⁻¹)	AND	BAND	ASSIGNMENTS
FOR THE 1,1,1-	TRIFLUOROETH	YL HA	LIDES				

Assignment	CF_3CH_2F		CF ₃ CH ₂ Cl		CF ₃ CH ₂ Br		CF ₃ CH ₂ I	
	Obs.ª	Calc.	Obs. ^b	Calc.	Obs. ^c	Calc.	Obs. ^c	Calc
CH₂ sym. str.	2984	2984	2994	2994	2992	2992	2991	2991
CH ₂ bend	1431	1431	1443	1443	1433	1433	1430	1429
C-C str.	1374	1371	1339	1339	1308	1306	1286	1291
CF₃ asym. str.	1296	1298	1267	1265	1250	1258	1223	1244
CH ₂ wag	1189	1191	1159	1159	1140	1141	1127	1120
CF ₃ sym. str.	843	853	855	855	843	846	844	840
C–X str.	1096	1096	801	800	723	725	671	672
CF ₃ sym. def.	666	661	639	640	633	632	632	622
CF ₃ asym. def.	550	546	541	542	528	528	537	521
CF ₃ rock	409	385	330	325	314	291	289	275
CCX bend	225	246	180	182	161	157	142	134
CH ₂ asym. str.	3015	3015	3044	3044	3025	3025	3044	3044
CF ₃ asym. str.	1296	1302	1277	1279	1280	1276	1275	1276
CH ₂ twist	1189	1199	1110	1111	1082	1080	1060	1062
CH ₂ rock	972	967	905	905	868	869	880	881
CF ₃ asym. def.	541	545	541	541	528	527	516	521
CF₃ rock	350	358	355	358	355	357	355	357
Torsion	120	139	109	109	101	97	94	91

^a From Refs. 1 and 2.

^b From Refs 3 and 4.

^e From Ref. 1.

represent mixtures of CF₃ rock (~60%) and C-X stretch (~20%, with this contribution increasing from 14% in the chloride to 27% in the iodide) for the next to the smallest frequency, and the smallest frequency representing about 60% C-C-X bend and 20% CF₃ rock. However, in the fluoride, the two smallest *a'* frequencies both represent approximately equal mixtures of the CF₃ rock and C-C-F bend. These two frequencies show the largest differences between observed and calculated values of all the frequencies for the fluoride. This behavior suggests that some interaction constant which has been neglected is considerably more important in the fluoride than in the other halides. The torsional force constant does not reproduce the fluoride torsional frequency as well as for the other halides, suggesting that the CH₂F fluorine must affect this force constant more so than does the corresponding bromine or iodine.

The force constants used to calculate the frequencies given in Tables 1 and 2 are listed in Table 3. The good agreement between calculated and observed frequencies for CF_3CH_2F , CF_3CH_2Br and CF_3CH_2I , using CF_3 force constant values transferred from CF_3CH_2Cl , support the present vibrational assignments and indicate that these force constants are at least very nearly the same in all four molecules, although there is nothing unique about the set derived here.

Force constant	Coordinate(s) involved	CF₃CH₂F	CF ₃ CH ₂ Cl	CF ₃ CH ₂ Br	CF₃CH₂I
Stretch					
K _r	C-H	4.897	4.968	4.936	4.966
K _R	C–C	4.626 ^b	4.626 ^b	4.386	4.251
K _S	C-F	5.417 ^b	5.417	5.417 ^b	5.417 ^b
KX	C-X	6.045	3.700	3.358	2.951
Stretch-str	etch				
Fr	С–Н, С–Н	0.078	0.046	0.072	0.041
Fs	C–F, C–F	1.597 ^b	1.597	1.597 ^b	1.597 ^b
F _{RS}	CC, CF	0.425 ^b	0.425	0.425 ^b	0.425 ^b
F _{RX}	С-С, С-Х	0.550 ^b	0.550 ^b	0.550 ^b	0.550 ^b
Bend					
H_{α}	НСН	0.400	0.454	0.457	0.443
H_{β}	HCC	0.755	0.688	0.693	0.716
$\dot{H_{\gamma}}$	HCX	0.905	0.727	0.635	0.633
H_{δ}	CCX	1.112	0.927	1.064	0.933
H_{0}	CCF	0.761 ^b	0.761	0.761 ^b	0.761 ^ь
H_{ω}	FCF	1.810	1.774	1.657	1.603
Stretch-be	nd				
$F_{R\delta}$	C–C, CCX	0.084 ^b	0.084 ^b	0.084 ^b	0.084 ^b
$F_{R\theta}$	C-C, CCF	0.199 ^b	0.199 ^b	0.199 ^b	0.199 ^b
FRω	C-C, FCF	0.209 ^b	-0.209 ^b	0.209 ^b	0.209ъ
$F_{\mathbf{X}\gamma}$	C-X, HCX	0.333 ^b	0.333b	0.333ъ	0.333 ^b
FXð	C-X, CCX	0.325 ^b	0.325	0.325 ^b	0.325 ^b
$F_{S\theta}$	C-F, CCF (C-C common)	—0.100 ^ь	—0.100ъ	0.100 ^b	—0.100 ^ь
$F'_{S\theta}$	C-F, CCF (C common)	0.100ь	0.100 ^b	0.100 ^b	0.100 ^b
$F_{S\omega}$	C-F, FCF (C-F common)	0.102ь	—0.102ь	0.102 ^b	0.102ъ
$F'_{S\omega}$	C-F, FCF (C common)	0.332ь	0.332b	0.332 ^b	0.332ь
Bend–bena	1				
F_{θ}	CCF, CCF	0.2 74 ^b	0.274	-0.274 ^b	0 .274 ^ь
$F_{\beta\gamma}$	HCC, HCX (H–C common)	0.252	0.144	0.106	0.135
$F_{\beta\gamma}$	HCC, HCX (C common)	0.019 ^b	0.019 ^b	0.019 ^b	0.019 ^ь
$F_{\theta\omega}$	CCF, FCF (C-F common)	0.359 ^b	—0.359ъ	-0.359 ^b	—0.359ь
F _{θω}	CCF, FCF (C common)	-0.259 ^b	0.259 ^b	—0.259 ^ь	0.259 ^b
F_{ω}	FCF, FCF	0.059 ^b	0.059 ^b	0.059 ^b	0.059 ^b
Torsion					
H_{τ}	C-C	0.0217ь	0.0217	0.0217 ^b	0.0217 ^b

TABLE 3

FORCE CONSTANTS FOR THE 1,1,1-TRIFLUOROETHYL HALIDES^a

^a Stretching constants in units of millidynes per angstrom (or newtons per centimeter). Stretchbend interaction constants in units of millidynes per radian (or 10^{-8} newtons per radian). Bending constants in units of millidyne angstroms per square radian (or 10^{-16} newton centimeters per square radian).

^b Constrained.

REFERENCES

- 1 W. F. EDGELL, T. R. RIETHOF AND C. WARD, J. Mol. Spectroscopy, 11 (1963) 92.
- 2 A. DANTI AND J. L. WOOD, J. Chem. Phys., 30 (1959) 582.
- 3 J. R. NIELSEN, C. Y. LIANG AND D. C. SMITH, J. Chem. Phys., 21 (1953) 1060.
- 4 E. CATALANO AND K. S. PITZER, J. Phys. Chem., 62 (1958) 838.
- 5 J. H. SCHACHTSCHNEIDER AND R. G. SNYDER, Spectrochim. Acta, 19 (1963) 117.
- 6 J. H. SCHACHTSCHNEIDER, Shell Development Co. Tech. Repts., Nos. 231-264 (1964) and 57-65 (1965).
- 7 A. B. DEMPSTER AND G. ZERBI, J. Mol. Spectroscopy, 39 (1971) 1.
- 8 G. A. CROWDER, J. Fluorine Chem., 2 (1972/73) 107.
- 9 G. A. CROWDER, Mol. Phys., 23 (1972) 707.
- 10 E. C. TUAZON, W. G. FATELEY AND F. F. BENTLEY, Appl. Spectroscopy, 25 (1971) 374.